These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Salivary MUC7 is a major carrier of blood group I type O-linked oligosaccharides serving as the scaffold for sialyl Lewis x. Author: Karlsson NG, Thomsson KA. Journal: Glycobiology; 2009 Mar; 19(3):288-300. PubMed ID: 19043084. Abstract: Isolation of salivary MUC7 with gel electrophoresis allowed analysis by LC-MS and LC-MS(2) of released O-linked oligosaccharides and a thorough description of the glycosylation of this molecule, where high-molecular-weight oligosaccharides up to the size of 2790 Da and with up to three sialic acid residues were identified. A common theme of these novel high abundant oligosaccharides on MUC7 showed that the C-3 branch of the oligosaccharides consisted of branched I-antigen type structural epitopes (GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-), where the branch point was initiated on core 1 and core 2 galactose residues, and the branches were terminated by sialyl type 2 and sialyl Lewis x epitopes. Six sulfated sialylated oligosaccharides of low intensity were also identified, with the sulfate mainly on N-acetyl glucosamine residues located close to the reducing termini. One of these oligosaccharides was identified as a candidate for the high-affinity L-selectin ligand 6'-sulfo sialyl Lewis x. Neutral oligosaccharides and blood group antigens were found to be less abundant on MUC7 and the glycosylation appeared to be more preserved between individuals as compared to salivary MUC5B. This was illustrated by comparing the LC-MS spectra of MUC7 and MUC5B glycans from secretors (23 individuals) and nonsecretors (6 individuals). The data show that MUC7 provides a multivalent scaffold for sialylation, meeting the requirement for high-avidity binding via its glycosylation and mediator of the interaction between immune cells such as salivary neutrophils and oral bacteria.[Abstract] [Full Text] [Related] [New Search]