These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Diurnal odor, ammonia, hydrogen sulfide, and carbon dioxide emission profiles of confined swine grower/finisher rooms. Author: Sun G, Guo H, Peterson J, Predicala B, Laguë C. Journal: J Air Waste Manag Assoc; 2008 Nov; 58(11):1434-48. PubMed ID: 19044159. Abstract: The objective of this study was to obtain diurnal variation profiles of odor and gas (ammonia [NH3], hydrogen sulfide [H2S], carbon dioxide [CO2]) concentrations and emission rate (OGCER) from confined swine grower/ finisher rooms under three typical weather conditions (warm, mild, and cold weather) in a year. Two grower/ finisher rooms, one with a fully slatted floor and the other with partially slatted floors, were measured for 2 consecutive days under each weather condition. The results revealed that the diurnal OGCER in the room with a fully slatted floor was 9.2-39.4% higher than that with a partially slatted floor; however, no significant differences in the diurnal OGCER were found between these two rooms, except for the NH3 concentrations in August, the NH3 and H2S concentrations and emissions in October, and odor concentrations and emissions in February (p > 0.05). The OGCER variations presented different diurnal patterns as affected by time of day, season, type of floor, ventilation rate, animal growth cycles, in-house manure storage, and weather conditions. Significant diurnal fluctuations in the OGCER (except for the odor concentrations and H2S emissions) were observed in August (p < 0.05); all of the gas emissions in October and the CO2 concentrations and emissions in February also showed significant diurnal variations (p < 0.05). These significant diurnal variations indicated that the OGCER during different periods of a day should be monitored when quantifying OGCER concentrations and emissions; for example, source emission data used in air dispersion modeling to decrease the great incertitude of setback determination using randomly measured data.[Abstract] [Full Text] [Related] [New Search]