These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Two-dimensional (2+n) resonance enhanced multiphoton ionization of HCl: Photorupture channels via the F 1Delta2 Rydberg state and ab initio spectra. Author: Kvaran A, Wang H, Matthiasson K, Bodi A, Jónsson E. Journal: J Chem Phys; 2008 Oct 28; 129(16):164313. PubMed ID: 19045272. Abstract: Mass spectra were recorded for (2+n) resonance enhanced multiphoton ionization (REMPI) of HCl as a function of resonance excitation energy in the 82 600-88 100 cm(-1) region to obtain two-dimensional REMPI data. Analysis of ion-mass signal intensities for excitations via the F (1)Delta(2)(v(')=0-2) and the V (1)Sigma(+)(v(')) states as a function of rotational quantum numbers in the intermediate states either revealed near-resonance interactions or no significant coupling between the F (1)Delta(2) and the V (1)Sigma(+) states, depending on quantum levels. Ion-signal intensities and power dependence measurements allowed us to propose photoionization mechanisms in terms of intermediate state involvement. Based on relative ion-signal intensities and rotational line positions we quantified the contributions of Rydberg and valence intermediate states to the photoionization product formation and evaluated coupling strengths for state mixing. Time-dependent density functional theory (TD-DFT), equation-of-motion coupled cluster (EOM-CC), and completely renormalized EOM-CC calculations with various basis sets were performed to derive singlet state potential energy curves, relevant spectroscopic parameters, and to calculate spectra. Experimentally observed spectra and older calculations are compared with the reported ab initio results.[Abstract] [Full Text] [Related] [New Search]