These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mutational analysis of CDC42Sc, a Saccharomyces cerevisiae gene that encodes a putative GTP-binding protein involved in the control of cell polarity.
    Author: Ziman M, O'Brien JM, Ouellette LA, Church WR, Johnson DI.
    Journal: Mol Cell Biol; 1991 Jul; 11(7):3537-44. PubMed ID: 1904541.
    Abstract:
    The Saccharomyces cerevisiae CDC42 gene product, a member of the ras superfamily of low-molecular-weight GTP-binding proteins, is involved in the control of cell polarity. We have analyzed the effects of three CDC42 mutations (Gly to Val-12, Gln to Leu-61, and Asp to Ala-118) in the putative GTP-binding and hydrolysis domains and one mutation (Cys to Ser-188) in the putative isoprenylation site. The first three mutations resulted in either a dominant-lethal or dose-dependent dominant-lethal phenotype when present on plasmids in haploid cdc42-1ts or wild-type strains. Both wild-type and cdc42-1ts cells carrying plasmids (pGAL) with either the CDC42Val-12 or CDC42Leu-61 alleles under the control of a GAL promoter were arrested with a novel phenotype of large cells with elongated or multiple buds. Cells carrying pGAL-CDC42Ala-118 were arrested as large, round, unbudded cells reminiscent of cdc42-1ts arrested cells. The different phenotype of the CDC42Ala-118 mutant versus the CDC42Val-12 and CDC42Leu-61 mutants was unexpected since the phenotypes of all three analogous ras mutants were similar to each other. This suggests that aspects of the biochemical properties of the Cdc42 protein differ from those of the Ras protein. The cdc42Ser-188 mutant gene was incapable of complementing the cdc42-1ts mutation and was recessive to both wild-type and cdc42-1ts. In double-mutant alleles, the cdc42Ser-188 mutation was capable of suppressing the dominant lethality associated with the three putative GTP-binding and hydrolysis mutations, suggesting that isoprenylation is necessary for the activity of the wild-type and mutant proteins.
    [Abstract] [Full Text] [Related] [New Search]