These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structure and predissociation of the 3psigma(u)D (3)Sigma(u) (+) Rydberg state of N(2): first extreme-ultraviolet and new near-infrared observations, with coupled-channels analysis. Author: Lewis BR, Baldwin KG, Heays AN, Gibson ST, Sprengers JP, Ubachs W, Fujitake M. Journal: J Chem Phys; 2008 Nov 28; 129(20):204303. PubMed ID: 19045860. Abstract: The 3psigma(u)D (3)Sigma(u) (+) Rydberg state of N(2) is studied experimentally using two high-resolution spectroscopic techniques. First, the forbidden D (3)Sigma(u) (+)-X (1)Sigma(g) (+) transition is observed for the first time via the (0,0) band of (14)N(2) and the (1,0) band of (15)N(2), using 1 extreme-ultraviolet +1 ultraviolet two-photon-ionization laser spectroscopy. Second, the Rydberg-Rydberg transition D (3)Sigma(u) (+)-E (3)Sigma(g) (+) is studied using near-infrared diode-laser photoabsorption spectroscopy, thus extending the previous measurements of Kanamori et al. [J. Chem. Phys. 95, 80 (1991)], to higher transition energies, and thereby revealing the (2,2) and (3,3) bands. The combined results show that the D(v=0-3) levels exhibit rapidly increasing rotational predissociation as v increases, spanning nearly four orders of magnitude. The D-state level structure and rotational predissociation signature are explained by means of a coupled-channels model which considers the electrostatically coupled (3)Pi(u) Rydberg-valence manifold, together with a pure-precession L-uncoupling rotational interaction between the 3psigma(u)D (3)Sigma(u) (+) and 3ppi(u)G (3)Pi(u) Rydberg p-complex components.[Abstract] [Full Text] [Related] [New Search]