These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: TRPM4 regulates migration of mast cells in mice.
    Author: Shimizu T, Owsianik G, Freichel M, Flockerzi V, Nilius B, Vennekens R.
    Journal: Cell Calcium; 2009 Mar; 45(3):226-32. PubMed ID: 19046767.
    Abstract:
    We demonstrate here that the transient receptor potential melastatin subfamily channel, TRPM4, controls migration of bone marrow-derived mast cells (BMMCs), triggered by dinitrophenylated human serum albumin (DNP-HSA) or stem cell factor (SCF). Wild-type BMMCs migrate after stimulation with DNP-HSA or SCF whereas both stimuli do not induce migration in BMMCs derived from TRPM4 knockout mice (trpm4(-/-)). Mast cell migration is a Ca(2+)-dependent process, and TRPM4 likely controls this process by setting the intracellular Ca(2+) level upon cell stimulation. Cell migration depends on filamentous actin (F-actin) rearrangement, since pretreatment with cytochalasin B, an inhibitor of F-actin formation, prevented both DNP-HSA- and SCF-induced migration in wild-type BMMC. Immunocytochemical experiments using fluorescence-conjugated phalloidin demonstrate a reduced level of F-actin formation in DNP-HSA-stimulated BMMCs from trpm4(-/-) mice. Thus, our results suggest that TRPM4 is critically involved in migration of BMMCs by regulation of Ca(2+)-dependent actin cytoskeleton rearrangements.
    [Abstract] [Full Text] [Related] [New Search]