These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metal nitride cluster fullerene M3N@C80 (M=Y, Sc) based dyads: synthesis, and electrochemical, theoretical and photophysical studies.
    Author: Pinzón JR, Cardona CM, Herranz MA, Plonska-Brzezinska ME, Palkar A, Athans AJ, Martín N, Rodríguez-Fortea A, Poblet JM, Bottari G, Torres T, Gayathri SS, Guldi DM, Echegoyen L.
    Journal: Chemistry; 2009; 15(4):864-77. PubMed ID: 19053104.
    Abstract:
    The first pyrrolidine and cyclopropane derivatives of the trimetallic nitride templated (TNT) endohedral metallofullerenes I(h)-Sc(3)N@C(80) and I(h)-Y(3)N@C(80) connected to an electron-donor unit (i.e., tetrathiafulvalene, phthalocyanine or ferrocene) were successfully prepared by 1,3-dipolar cycloaddition reactions of azomethine ylides and Bingel-Hirsch-type reactions. Electrochemical studies confirmed the formation of the [6,6] regioisomers for the Y(3)N@C(80)-based dyads and the [5,6] regioisomers in the case of Sc(3)N@C(80)-based dyads. Similar to other TNT endohedral metallofullerene systems previously synthesized, irreversible reductive behavior was observed for the [6,6]-Y(3)N@C(80)-based dyads, whereas the [5,6]-Sc(3)N@C(80)-based dyads exhibited reversible reductive electrochemistry. Density functional calculations were also carried out on these dyads confirming the importance of these structures as electron transfer model systems. Furthermore, photophysical investigations on a ferrocenyl-Sc(3)N@C(80)-fulleropyrrolidine dyad demonstrated the existence of a photoinduced electron-transfer process that yields a radical ion pair with a lifetime three times longer than that obtained for the analogous C(60) dyad.
    [Abstract] [Full Text] [Related] [New Search]