These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Relative tolerance of an enzymatic molten globule and its thermostable counterpart to point mutation. Author: Woycechowsky KJ, Choutko A, Vamvaca K, Hilvert D. Journal: Biochemistry; 2008 Dec 23; 47(51):13489-96. PubMed ID: 19053245. Abstract: Enzyme structures reflect the complex interplay between the free energy of unfolding (DeltaG) and catalytic efficiency. Consequently, the effects of point mutations on structure, stability, and function are difficult to predict. It has been proposed that the mutational robustness of homologous enzymes correlates with a higher initial DeltaG. To examine this issue, we compared the tolerance of a natural thermostable chorismate mutase and an engineered molten globular variant to targeted mutation. These mutases possess similar sequence, structure, and catalytic efficiency but dramatically different DeltaG values. We find that analogous point mutations can have widely divergent effects on catalytic activity in these scaffolds. In a set of five rationally designed single-amino acid changes, the thermostable scaffold suffers activity losses ranging from 50-fold smaller, for an aspartate-to-glycine substitution at the active site, to 2-fold greater, for a phenylalanine-to-tryptophan substitution in the hydrophobic core, versus that of the molten globular scaffold. However, biophysical characterization indicates that the variations in catalytic efficiency are not caused by losses of either secondary structural integrity or thermodynamic stability. Rather, the activity differences between variant pairs are very much context-dependent and likely stem from subtle changes in the fine structure of the active site. Thus, in many cases, it may be more productive to focus on changes in local conformation than on global stability when attempting to understand and predict how enzymes respond to point mutations.[Abstract] [Full Text] [Related] [New Search]