These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Critical region for amyloid fibril formation of mouse prion protein: unusual amyloidogenic properties of the helix 2 peptide.
    Author: Yamaguchi K, Matsumoto T, Kuwata K.
    Journal: Biochemistry; 2008 Dec 16; 47(50):13242-51. PubMed ID: 19053276.
    Abstract:
    To gain insight into the structural mechanism of the conformational conversion process of prion, we examined the potential amyloidogenic property of each secondary structural element in a mouse prion protein (mPrP) and discriminated their relative significance for the formation of amyloid fibrils. Although peptides corresponding to alpha-helix 2 and alpha-helix 3 (named H2 peptide and H3 peptide, respectively) formed the amyloid-like fibrils, their structures were quite different. H2 fibrils formed the ordered beta-sheet with the beta-turn conformation, and the resultant fibrils were long and straight. In contrast, H3 fibrils consisted of the beta-sheet with the random conformation, and the resultant fibrils were short and flexible. These properties are basically consistent with their hydrophobicity and beta-strand propensity profiles. To examine the cross reactivity between peptide fragments and full-length mPrP, we then carried out seeding experiments. While H2 seeds induced the formation of fibrils of full-length mPrP as quickly as full-length mPrP seeds, H3 seeds exhibited a long lag time. This implies that the region of alpha-helix 2 rather than alpha-helix 3 in mPrP has great potential for initiating fibril formation. As a whole, the alpha-helix 2 region would be crucial for the nucleation-dependent replication process of the prion protein.
    [Abstract] [Full Text] [Related] [New Search]