These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Extraction of DNA from soil for analysis of bacterial diversity in transgenic and nontransgenic papaya sites.
    Author: Sheu C, Wu CY, Chen SC, Lo CC.
    Journal: J Agric Food Chem; 2008 Dec 24; 56(24):11969-75. PubMed ID: 19053384.
    Abstract:
    The influence of transgenic crops on the soil diversity of microorganisms is one of the major risk assessments being conducted in Taiwan since 2007, and a reliable soil DNA extraction method for denaturing gradient gel electrophoresis (DGGE) is required. Six soils of different type, organic matter content, cation exchange capacity, and pH were tested, and four previously reported soil DNA extraction methods were applied to these soils. Soil DNA extracts by Zhou's CS method plus QIAquick gel was recommended in our laboratory for DGGE to monitor the microbial diversity in soil. There were some differences on the bacterial diversity based on DGGE patterns at the beginning of planting, and the difference decreased after six months. The results also indicated that clay content (10.8-25.0%) and pH (4.4-6.9) of different soil samples we tested did not affect the DNA extraction efficiencies, but positive correlations were found between the organic matter content (1.2-3.9%) of soils and the DNA yields in Widmer's GS method (r = 0.93, p = 0.005) and the MoBio UC method (r = 0.92, p = 0.007). Coefficient of determinations between organic matter content and DNA yield were higher than those between clay content, CEC, and pH, indicating that organic matter content was more correlated with DNA yield than that clay content, CEC, and pH in our soil samples tested.
    [Abstract] [Full Text] [Related] [New Search]