These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of combined local treatment with zoledronic acid and basic fibroblast growth factor on implant fixation in ovariectomized rats. Author: Gao Y, Luo E, Hu J, Xue J, Zhu S, Li J. Journal: Bone; 2009 Feb; 44(2):225-32. PubMed ID: 19056525. Abstract: Osteoporosis is a skeletal disorder characterized by low bone mass and deterioration of bone microarchitecture resulting in bone fragility, which impairs fixation of the implants. Zoledronic acid (ZOL) is a potential inhibitor of osteoclast-mediated bone resorption and basic fibroblast growth factor (bFGF) is a growth factor that stimulates osteoblast-mediated bone formation, and these drugs could enhance fixation of implants under osteoporotic conditions. In this study, 40 ovariectomized (OVX) rats were randomly divided into 4 groups (n=10 for each group) and underwent bilateral tibiae implantation using hydroxyapatite (HA)-coated titanium implant: Control group (distilled water immersing before implantation), ZOL group (1 mg/ml of ZOL immersing), bFGF group (20 microg/ml of bFGF immersing), and ZOL+bFGF group (1 mg/ml of ZOL and 20 microg/ml of bFGF immersing). At 3 months after implantation, all animal were sacrificed and the tibiae were harvested for histology, micro-CT examinations and biomechanical testing. Bone area and contact, determined by histomorphometric analysis, were 2.7-fold and 1.8-fold in the ZOL-treated implants, 1.9-fold and 1.8-fold in the bFGF-treated implants, 3.6-fold and 2.3-fold in the both-treated implants compared with controls (p<0.01). Such significant effects were further confirmed by microstructure parameters, the bone volume ratio and the percentage osteointegration were significantly increased by ZOL treatment (3.0-fold and 1.8-fold), bFGF treatment (1.2-fold and 1.9-fold) and ZOL+bFGF treatment (3.3-fold and 2.7-fold) (p<0.001). In addition, push-out test showed that the maximum force and the corresponding interfacial shear strength of the implants treated by ZOL, bFGF and ZOL+bFGF was 8.4-fold and 8.6-fold, 3.8-fold and 3.7-fold, 10.8-fold and 10.7-fold of the control levels, respectively (p<0.05). The combined treatment was better than either treatment alone for force, but was not different from ZOL alone for interfacial strength. The significant correlation between biomechanical and micro-CT parameters demonstrates the role of microstructure assessments in predicting mechanical fixation of implants (p<0.01). Our study suggests that locally applied ZOL or bFGF may improve implant fixation in the ovariectomized rats, and that combined treatment has more beneficial effects on osseointegration, peri-implant bone formation and maximum force than either intervention alone.[Abstract] [Full Text] [Related] [New Search]