These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of thyroid status and fasting on hepatic metabolism of apolipoprotein A-I. Author: Wilcox HG, Frank RA, Heimberg M. Journal: J Lipid Res; 1991 Mar; 32(3):395-405. PubMed ID: 1906085. Abstract: Metabolism of apolipoprotein (apo)A-I was studied in normal and chow-fed hyperthyroid rats, in 24-h fasted untreated male rats, and in rats after thyroparathyroidectomy (TXPTX). Rats were made hyperthyroid by administration of T3 (9.6 micrograms/day) or T4 (30 micrograms/day) with an Alzet osmotic minipump. Hyperthyroidism produced a similar two- to threefold elevation in plasma levels of apoA-I in male or female animals. During treatment with T3, plasma levels of T3 ranged from 200 to 400 ng/dl and did not correlate with plasma apoA-I levels. The net mass secretion and synthesis ([3H]leucine incorporation) of apoA-I by perfused livers from male hyperthyroid rats was elevated, while secretion of albumin was not different than that of euthyroid rats. Furthermore, the incorporation of [3H]leucine into total perfusate and hepatic protein was not altered by hyperthyroidism. The effect of thyroid hormone on apoA-I synthesis, therefore, does not appear to be a general effect on protein synthesis. After longer periods of treatment (28 days) with T3 (9.6 micrograms/day), hepatic apoA-I production decreased from that observed after 7 or 14 days of treatment, yet plasma apoA-I concentrations remained elevated. Plasma T3 decreased from 100 ng/dl to 40 ng/dl, in the hypothyroid rat resulting from TXPTX, but the plasma concentration of apoA-I did not change during the 2-week experimental period. The net secretion of apoA-I by livers from hypothyroid animals was depressed and albumin was uneffected compared to the euthyroid. Overnight fasting of euthyroid rats did not alter hepatic apoA-I secretion or plasma apoA-I levels, although under fasting conditions we had reported that hepatic output of apoB and E of VLDL is depressed. The addition of oleic acid to the perfusion medium, sufficient to stimulate VLDL production, did not affect net hepatic secretion of apoA-I by livers from euthyroid, hyperthyroid, or hypothyroid rats. In summary, hepatic synthesis of apoA-I appears to be controlled independently of other apo-lipoproteins and secretory proteins (albumin). Hepatic apoA-I synthesis is sensitive to thyroid status, increased in the hyperthyroid and decreased in the hypothyroid state. The specific stimulation of hepatic synthesis and secretion of apoA-I in the hyperthyroid state, however, tends to normalize over an extended period, perhaps from compensatory effects of a hormonal nature.[Abstract] [Full Text] [Related] [New Search]