These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ionizing radiation-induced NF-kappaB activation requires PARP-1 function to confer radioresistance. Author: Veuger SJ, Hunter JE, Durkacz BW. Journal: Oncogene; 2009 Feb 12; 28(6):832-42. PubMed ID: 19060926. Abstract: Recent reports implicate poly(ADP-ribose) polymerase-1 (PARP-1) in the activation of nuclear factor kappaB (NF-kappaB). We investigated the role of PARP-1 in the NF-kappaB signalling cascade induced by ionizing radiation (IR). AG14361, a potent PARP-1 inhibitor, was used in two breast cancer cell lines expressing different levels of constitutively activated NF-kappaB, as well as mouse embryonic fibroblasts (MEFs) proficient or deficient for PARP-1 or NF-kappaB p65. In the breast cancer cell lines, AG14361 had no effect on IR-induced degradation of IkappaBalpha or nuclear translocation of p50 or p65. However, AG14361 inhibited IR-induced NF-kappaB-dependent transcription of a luciferase reporter gene. Similarly, in PARP-1(-/-) MEFs, IR-induced nuclear translocation of p50 and p65 was normal, but kappaB binding and transcriptional activation did not occur. AG14361 sensitized both breast cancer cell lines to IR-induced cell killing, inhibited IR-induced XIAP expression and increased caspase-3 activity. However, AG14361 failed to increase IR-induced caspase activity when p65 was knocked down by siRNA. Consistent with this, AG14361 sensitized p65(+/+) but not p65(-/-) MEFs to IR. We conclude that PARP-1 activity is essential in the upstream regulation of IR-induced NF-kappaB activation. These data indicate that potentiation of IR-induced cytotoxicity by AG14361 is mediated solely by inhibition of NF-kappaB activation.[Abstract] [Full Text] [Related] [New Search]