These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Species delimitation in downy mildews: the case of Hyaloperonospora in the light of nuclear ribosomal ITS and LSU sequences. Author: Göker M, Voglmayr H, Blázquez GG, Oberwinkler F. Journal: Mycol Res; 2009 Mar; 113(Pt 3):308-25. PubMed ID: 19061957. Abstract: Species definitions for plant pathogens have considerable practical impact for measures such as plant protection or biological control, and are also important for comparative studies involving model organisms. However, in many groups, the delimitation of species is a notoriously difficult taxonomic problem. This is particularly evident in the obligate biotrophic downy mildew genera (Peronosporaceae, Peronosporales, Oomycetes), which display a considerable diversity with respect to genetic distances and host plants, but are, for the most part, morphologically rather uniform. The recently established genus Hyaloperonospora is of particular biological interest because it shows an impressive radiation on virtually a single host family, Brassicaceae, and it contains the downy mildew parasite, Arabidopsis thaliana, of importance as a model organism. Based on the most comprehensive molecular sampling of specimens from a downy mildew genus to date, including various collections from different host species and geographic locations, we investigate the phylogenetic relationships of Hyaloperonospora by molecular analysis of the nuclear ribosomal ITS and LSU sequences. Phylogenetic trees were inferred with ML and MP from the combined dataset; partitioned Bremer support (PBrS) was used to assess potential conflict between data partitions. As in other downy mildew groups, the molecular data clearly corroborate earlier results that supported the use of narrow species delimitations and host ranges as taxonomic markers. With few exceptions, suggested species boundaries are supported without conflict between different data partitions. The results indicate that a combination of molecular and host features is a reliable means to discriminate downy mildew species for which morphological differences are unknown.[Abstract] [Full Text] [Related] [New Search]