These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protein kinase C mediates amyloid beta-protein fragment 31-35-induced suppression of hippocampal late-phase long-term potentiation in vivo.
    Author: Zhang JF, Qi JS, Qiao JT.
    Journal: Neurobiol Learn Mem; 2009 Mar; 91(3):226-34. PubMed ID: 19061963.
    Abstract:
    Amyloid beta-protein (Abeta) in the brain of Alzheimer's disease (AD) plays a detrimental role in synaptic plasticity and cognitive function. The effects of Abeta on the early-phase long-term potentiation (E-LTP) have been reported widely. However, whether the late-phase long-term potentiation (L-LTP), which differs from E-LTP mechanistically, is also affected by Abeta is still an open question. The present study examined the effects of intracerebraventricular injection of Abeta fragments 25-35 and 31-35 on the L-LTP in the CA1 area of rat hippocampus in vivo, and further investigated its possible underlying mechanism. Our results showed that: (1) Abeta25-35 (6.25-25 nmol) did not affect the baseline field excitatory postsynaptic potentials, but dose-dependently suppressed multiple high-frequency stimuli-induced L-LTP; (2) Abeta31-35, a shorter Abeta fragment than Abeta25-35, also significantly suppressed L-LTP, with the same suppressive effects as Abeta25-35; (3) pretreatment with PMA (6 nmol/5 microl), a membrane permeable PKC agonist, effectively prevented Abeta31-35-induced deficits in the early and the late components of L-LTP; (4) co-application of Abeta31-35 and chelerythrine (12 nmol/5 microl), a PKC antagonist, caused no additive suppression of L-LTP. These results indicate that both Abeta25-35 and Abeta31-35 can impair hippocampal synaptic plasticity in vivo by suppressing the maintenance of L-LTP, and PKC probably mediates the Abeta-induced suppression of hippocampal L-LTP. In addition, the similar efficacy of Abeta31-35 and Abeta25-35 in L-LTP suppression supports the hypothesis we suggested previously that the sequence 31-35 in Abeta might be the shortest active sequence responsible for the neuronal toxicity induced by full length of Abeta molecules.
    [Abstract] [Full Text] [Related] [New Search]