These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Adsorption of lambda-cyhalothrin and cypermethrin on two typical Chinese soils as affected by copper.
    Author: Liu J, Lü X, Xie J, Chu Y, Sun C, Wang Q.
    Journal: Environ Sci Pollut Res Int; 2009 Jun; 16(4):414-22. PubMed ID: 19067015.
    Abstract:
    BACKGROUND, AIM, AND SCOPE: Pesticides and heavy metals pollution in soil environment has become a serious problem in many countries including China. Repeated applications of bordeaux mixture (a blend of copper sulfate and calcium hydroxide) and pyrethroid (Pys) insecticides have led to elevated copper (Cu) and Pys concentrations in vineyard surface soils. However, few studies focused on the interaction of Pys and heavy metals in the soil environment. Our previous studies had indicated the combined effect of cypermethrin (CPM) and Cu on soil catalase activity. Also, we had suggested that the addition of Cu could catalyze photo-degradation of CPM and lambda-cyhalothrin (lambda-CHT) in aqueous solution and restrain their degradation in soil. To better understand the potential influence of Cu on the fate of Pys in the soil environment, the aim of the present work was to examine the effect of Cu on the adsorption of lambda-CHT and CPM on two typical Chinese soils with different soil characteristics, which was one of the key processes controlling the fate of Pys, and to provide more information about the potential ecological risk of chemicals on the soil ecosystem. Fourier transform infrared and point charges analysis using the MOPAC program of the Gaussian system were also used to reveal the probable adsorption mechanism of lambda-CHT and CPM on soils. MATERIALS AND METHODS: Two vineyard soils with different properties were chosen as experimental samples. They were sampled from 0 to 10 cm, dried, and sieved to 2 mm. Each soil was spiked with copper sulfate solution to obtain the following total soil Cu concentrations: 100, 200, 400, 800, and 1,600 mg.kg(-1). The treated soils were incubated for 2 weeks and then dried at 20 degrees C. For each soil sample and at each soil Cu concentration, the adsorption of lambda-CHT and CPM was measured using a batch equilibrium method. The concentration of lambda-CHT was determined by HPLC, and the amount of lambda-CHT and CPM adsorbed by the soil sample at equilibrium was determined by the difference between the initial and equilibrium concentrations in solution corrected by the blank adsorption measurement. RESULTS: Without the addition of Cu, the adsorption of lambda-CHT and CPM on Black soil is greater than that on Red soil, while the adsorption of lambda-CHT on both soils is significantly stronger than that of CPM. As the soil Cu concentration increased from 19 (or 18; background) to 1,600 mg.kg(-1), the adsorption coefficient (K (d)) of lambda-CHT decreased from 12.2 to 5.9 L.kg(-1) for Red soil, and from 26.1 to 16.8 L.kg(-1) for Black soil, whereas the CPM adsorption coefficient in both soils decreased nearly by 100% (K (d) decreased from 9.4 to 0.2 L.kg(-1) for Red soil and from 16.2 to 0.5 L.kg(-1) for Black soil). DISCUSSION: Pys adsorption is a surface phenomenon which depends on the surface area and the organic matter content. Thus, the Black soil, having higher organic matter and greater surface area than that of the Red soil, show greater adsorption affinity to lambda-CHT and CPM. In our study, the different adsorption affinity of the two Pys was obtained, which was probably attributed to differences with respect to their physical-chemical properties. Further comparison upon the two Pys was conducted. The point charges of halogen atoms in the lambda-CHT and CPM were calculated, the differences of which probably lead to the fact that lambda-CHT has a stronger binding capacity to soils than CPM. Also, FTIR spectra show that competitive adsorption occurs between CPM and Cu for the same adsorption sites, which is responsible for the obtained suppression of CPM adsorption affected by Cu. CONCLUSIONS: Lambda-cyhalothrin shows a significantly stronger adsorption than cypermethrin on both soils. This phenomenon may be due to several reasons: (1) lambda-CHT has lower solubility and a higher octanol-water partition coefficient value than CPM; (2) lambda-CHT consists of specific isomers, whereas CPM is mixtures of eight different isomers; (3) the chlorine and fluorine atoms in the lambda-CHT have a negative point charge, whereas the chlorine atoms in the CPM have a positive point charge. As the soil Cu concentrations increased from 19 (or 18) mg.kg(-1) to 1,600 mg.kg(-1), the adsorption coefficient of lambda-CHT and CPM decreased on both soils. This is mainly due to a competition between Cu and Pys for occupying the adsorption sites on soils. The information from this study have important implications for vineyard and orchard soils, which often contain elevated levels of Cu and Pys. These results are also useful in assessing the environmental fate and health effect of lambda-CHT and CPM. RECOMMENDATIONS AND PERSPECTIVES: It is important for environmental scientists and engineers to get a better understanding of soil-metal-organic contaminant interactions. However, pesticide adsorption involves complex processes, and shortcomings in understanding them still restrict the ability to predict the fate and behavior of pesticide. Therefore, considerable research should be carried out to understand the mechanism of interaction between Pys and heavy metal on soils clearly.
    [Abstract] [Full Text] [Related] [New Search]