These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Improving tumor-targeting capability and pharmacokinetics of (99m)Tc-labeled cyclic RGD dimers with PEG(4) linkers.
    Author: Wang L, Shi J, Kim YS, Zhai S, Jia B, Zhao H, Liu Z, Wang F, Chen X, Liu S.
    Journal: Mol Pharm; 2009; 6(1):231-45. PubMed ID: 19067525.
    Abstract:
    This report describes the synthesis of two cyclic RGD (Arg-Gly-Asp) conjugates, HYNIC-2PEG(4)-dimer (HYNIC = 6-hydrazinonicotinyl; 2PEG(4)-dimer = E[PEG(4)-c(RGDfK)](2); and PEG(4) = 15-amino-4,7,10,13-tetraoxapentadecanoic acid) and HYNIC-3PEG(4)-dimer (3PEG(4)-dimer = PEG(4)-E[PEG(4)-c(RGDfK)](2)), and evaluation of their (99m)Tc complexes [(99m)Tc(HYNIC-2PEG(4)-dimer)(tricine)(TPPTS)] ((99m)Tc-2PEG(4)-dimer: TPPTS = trisodium triphenylphosphine-3,3',3''-trisulfonate) and [(99m)Tc(HYNIC-3PEG(4)-dimer)(tricine)(TPPTS)] ((99m)Tc-3PEG(4)-dimer) as novel radiotracers for imaging integrin alpha(v)beta(3) expression in athymic nude mice bearing U87MG glioma and MDA-MB-435 breast cancer xenografts. The integrin alpha(v)beta(3) binding affinities of RGD peptides were determined by competitive displacement of (125)I-c(RGDyK) on U87MG glioma cells. It was found that the two PEG(4) linkers between RGD motifs in HYNIC-2PEG(4)-dimer (IC(50) = 2.8 +/- 0.5 nM) and HYNIC-3PEG(4)-dimer (IC(50) = 2.4 +/- 0.7 nM) are responsible for their higher integrin alpha(v)beta(3) binding affinity than that of HYNIC-PEG(4)-dimer (PEG(4)-dimer = PEG(4)-E[c(RGDfK)](2); IC(50) = 7.5 +/- 2.3 nM). Addition of extra PEG(4) linker in HYNIC-3PEG(4)-dimer has little impact on integrin alpha(v)beta(3) binding affinity. (99m)Tc-2PEG(4)-dimer and (99m)Tc-3PEG(4)-dimer were prepared in high yield with >95% radiochemical purity and the specific activity of >10 Ci/mumol. Biodistribution studies clearly demonstrated that PEG(4) linkers are particularly useful for improving the tumor uptake and clearance kinetics of (99m)Tc-2PEG(4)-dimer and (99m)Tc-3PEG(4)-dimer from noncancerous organs. It was also found that there was a linear relationship between the tumor size and radiotracer tumor uptake expressed as %ID (percentage of the injected dose) in U87MG glioma and MDA-MB-435 breast tumor models. The blocking experiment showed that the tumor uptake of (99m)Tc-2PEG(4)-dimer is integrin alpha(v)beta(3)-mediated. In the metabolism study, (99m)Tc-2PEG(4)-dimer had high metabolic stability during its excretion from renal and hepatobiliary routes. (99m)Tc-3PEG(4)-dimer also remained intact during thee excretion from the renal route, but, had approximately 30% metabolism during the excretion from the hepatobiliary route. Planar imaging studies in U87MG glioma and MDA-MB-435 breast tumor models showed that the tumors of approximately 5 mm in diameter could be readily visualized with excellent contrast. Thus, (99m)Tc-3PEG(4)-dimer is a very promising radiotracer for the early detection of integrin alpha(v)beta(3)-positive tumors, and may have the potential for noninvasive monitoring of tumor growth or treatment efficacy.
    [Abstract] [Full Text] [Related] [New Search]