These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dosimetric uncertainty in prostate cancer proton radiotherapy.
    Author: Lin L, Vargas C, Hsi W, Indelicato D, Slopsema R, Li Z, Yeung D, Horne D, Palta J.
    Journal: Med Phys; 2008 Nov; 35(11):4800-7. PubMed ID: 19070212.
    Abstract:
    PURPOSE: The authors we evaluate the uncertainty in proton therapy dose distribution for prostate cancer due to organ displacement, varying penumbra width of proton beams, and the amount of rectal gas inside the rectum. METHODS AND MATERIALS: Proton beam treatment plans were generated for ten prostate patients with a minimum dose of 74.1 cobalt gray equivalent (CGE) to the planning target volume (PTV) while 95% of the PTV received 78 CGE. Two lateral or lateral oblique proton beams were used for each plan. The authors we investigated the uncertainty in dose to the rectal wall (RW) and the bladder wall (BW) due to organ displacement by comparing the dose-volume histograms (DVH) calculated with the original or shifted contours. The variation between DVHs was also evaluated for patients with and without rectal gas in the rectum for five patients who had 16 to 47 cc of visible rectal gas in their planning computed tomography (CT) imaging set. The uncertainty due to the varying penumbra width of the delivered protons for different beam setting options on the proton delivery system was also evaluated. RESULTS: For a 5 mm anterior shift, the relative change in the RW volume receiving 70 CGE dose (V70) was 37.9% (5.0% absolute change in 13.2% of a mean V70). The relative change in the BW volume receiving 70 CGE dose (V70) was 20.9% (4.3% absolute change in 20.6% of a mean V70) with a 5 mm inferior shift. A 2 mm penumbra difference in beam setting options on the proton delivery system resulted in the relative variations of 6.1% (0.8% absolute change) and 4.4% (0.9% absolute change) in V70 of RW and BW, respectively. The data show that the organ displacements produce absolute DVH changes that generally shift the entire isodose line while maintaining the same shape. The overall shape of the DVH curve for each organ is determined by the penumbra and the distance of the target in beam's eye view (BEV) from the block edge. The beam setting option producing a 2 mm sharper penumbra at the isocenter can reduce the magnitude of maximal doses to the RW by 2% compared to the alternate option utilizing the same block margin of 7 mm. The dose to 0.1 cc of the femoral head on the distal side of the lateral-posterior oblique beam is increased by 25 CGE for a patient with 25 cc of rectal gas. CONCLUSION: Variation in the rectal and bladder wall DVHs due to uncertainty in the position of the organs relative to the location of sharp dose falloff gradients should be accounted for when evaluating treatment plans. The proton beam delivery option producing a sharper penumbra reduces maximal doses to the rectal wall. Lateral-posterior oblique beams should be avoided in patients prone to develop a large amount of rectal gas.
    [Abstract] [Full Text] [Related] [New Search]