These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Uranium sequestration by a marine cyanobacterium, Synechococcus elongatus strain BDU/75042. Author: Acharya C, Joseph D, Apte SK. Journal: Bioresour Technol; 2009 Apr; 100(7):2176-81. PubMed ID: 19070485. Abstract: A marine, unicellular cyanobacterium, Synechococcus elongatus strain BDU/75042 was found to sequester uranium from aqueous systems at pH 7.8. The organism could remove 72% (53.5 mg U g(-1) dry weight) of uranium from test solutions containing 100 microM uranyl carbonate within 1h. The equilibrium data fitted well in the Langmuir isotherm thus suggesting a monolayer adsorption of uranium on the cyanobacterial biomass and predicted the maximum adsorption capacity of 124 mg U g(-1) dry weight. Light and scanning electron microscopy coupled with energy dispersive X-ray fluorescence (EDXRF) spectroscopy confirmed the uranyl adsorption by this organism. Most of the bound uranium was found to be associated with the extracellular polysaccharides (EPS) suggesting its interaction with the surface active ligands. Fourier transform infrared (FT-IR) spectroscopy suggested the amide groups and the deprotonated carboxyl groups on the cyanobacterial cell surface were likely to be involved in uranyl adsorption. The cell bound uranium could be released by washing with ethylene diamine tetraacetic acid (EDTA) or 0.1N HCl. The X-ray diffraction (XRD) analyses revealed the identity of uranium deposits associated with the cell biomass as uranyl carbonate hydrate. The study revealed the potential of this cyanobacterium for harvesting uranium from natural aquatic environments.[Abstract] [Full Text] [Related] [New Search]