These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Soy isoflavone genistein upregulates epithelial adhesion molecule E-cadherin expression and attenuates beta-catenin signaling in mammary epithelial cells. Author: Su Y, Simmen RC. Journal: Carcinogenesis; 2009 Feb; 30(2):331-9. PubMed ID: 19073877. Abstract: Breast cancer risk is highly modifiable by diet; however, mechanisms underlying dietary protection against mammary tumorigenesis remain poorly understood. A proportion of breast carcinomas is associated with deregulation of beta-catenin stability and amplification of c-Myc expression. We recently showed that dietary exposure to the soy isoflavone genistein (Gen) inhibited Wnt transduction in rat mammary epithelial cells in vivo. Here, we explored the role of Gen on cell adhesion protein, E-cadherin, expression to downregulate beta-catenin proto-oncogene function. In mammary glands of female rats exposed to dietary Gen, E-cadherin and beta-catenin protein levels were increased, concurrent with higher beta-casein gene expression. In HC11 mouse mammary epithelial cells, Gen diminished basal and Wnt-1-induced cell proliferation and attenuated Wnt-1 targets c-Myc and Cyclin D1 expression. Whereas, Gen had no effect on E-cadherin transcript levels, the abundance of membrane E-cadherin protein and of E-cadherin-beta-catenin adhesion complex was increased by Gen, attendant with downregulation of Wnt-1-induced free beta-catenin accumulation in cytosol. Gen inhibition of Wnt-induced c-Myc expression was mimicked by an estrogen receptor (ER)-beta-specific but not ER-alpha-specific agonist and was attenuated with loss of ER-beta expression, concordant with decreased E-cadherin expression. E-cadherin small-interfering RNA targeting eliminated Gen inhibition of Wnt-stimulated c-Myc expression and promoted Gen induction of basal c-Myc transcript levels and subsequent proliferation. Our studies identify E-cadherin as a Gen cellular target and demonstrate that the dichotomy in mammary epithelial response to Gen may be a function of cellular E-cadherin expression.[Abstract] [Full Text] [Related] [New Search]