These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Marker-assisted dissection of genetic influences on motor and neuroendocrine sensitization to cocaine in rats. Author: Vendruscolo LF, Vendruscolo JC, Terenina E, Ramos A, Takahashi RN, Mormède P. Journal: Genes Brain Behav; 2009 Apr; 8(3):267-74. PubMed ID: 19077120. Abstract: This study investigated genetic influences on behavioral and neuroendocrine responses to cocaine sensitization. We used male and female rats of the inbred strains Lewis (LEW) and spontaneously hypertensive rats (SHR), which display genetic differences in stress-related responses. The influence of two quantitative trait loci (QTL; Ofil1 and Ofil2 on chromosomes 4 and 7), which modulate stress reactivity in rats, on the effects of cocaine was also investigated through the use of recombinant lines (derived from a LEW x SHR intercross) selected by their genotype at Ofil1 and Ofil2. Animals were given repeated cocaine or saline injections and tested for locomotion (induction of sensitization). Two weeks later, all animals were challenged with cocaine, and locomotion and corticosterone levels were measured (expression of sensitization). Results indicated that male SHR rats showed more behavioral sensitization than LEW rats, whereas no strain differences in sensitization were seen among females. When challenged with cocaine, LEW and SHR rats of both sexes pretreated with cocaine showed behavioral sensitization compared with saline pretreated animals; however, only LEW rats displayed an increase in the corticosterone levels. Ofil1 was found to influence the induction of sensitization in males and Ofil2 modulated the locomotor effect of cocaine in females. This study provides evidence of a genotype-dependent relationship between the induction and expression of cocaine sensitization, and between the behavioral and neuroendocrine responses induced by cocaine. Moreover, the Ofil1 and Ofil2 loci may contain one or more genes that control the behavioral effects of cocaine in rats.[Abstract] [Full Text] [Related] [New Search]