These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of CYP3A4 expression by ketoconazole is mediated by the disruption of pregnane X receptor, steroid receptor coactivator-1, and hepatocyte nuclear factor 4alpha interaction. Author: Lim YP, Kuo SC, Lai ML, Huang JD. Journal: Pharmacogenet Genomics; 2009 Jan; 19(1):11-24. PubMed ID: 19077665. Abstract: BACKGROUND: Earlier studies have shown that ketoconazole inhibits CYP3A4 expression through pregnane X receptor (PXR)-mediated transcription and coactivator interaction. The involvement of other nuclear receptors remains to be elucidated. It was recently reported that hepatocyte nuclear receptor 4alpha (HNF4alpha), a master regulator of several nuclear receptors, associates with PXR thus regulates the expression of CYP3A4 under rifampin treatment. We therefore focused on the role of PXR-HNF4alpha interaction in the transcriptional regulation of CYP3A4 under rifampin-mediated ketoconazole inhibition. METHODS AND RESULTS: Several approaches were used to characterize this role and to investigate the relation between the regulatory function of the PXR-HNF4alpha complex and CYP3A4 expression, including a mammalian two-hybrid system, DNA affinity precipitation assay, co-immunoprecipitation, and HNF4alpha silencing by RNA interference. Here, we report that HNF4alpha plays a critical role in CYP3A4 promoter activation, and the interaction between PXR and HNF4alpha, which is closely related to the expression of CYP3A4, might be involved in ketoconazole-mediated inhibition of CYP3A4 gene expression. These observations indicate that the inhibition of the interaction of PXR with HNF4alpha is likely an important mechanism of drug-drug interaction.[Abstract] [Full Text] [Related] [New Search]