These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Properties of an ezrin mutant defective in F-actin binding. Author: Saleh HS, Merkel U, Geissler KJ, Sperka T, Sechi A, Breithaupt C, Morrison H. Journal: J Mol Biol; 2009 Jan 30; 385(4):1015-31. PubMed ID: 19084535. Abstract: Ezrin, radixin and moesin are a family of proteins that provide a link between the plasma membrane and the cortical actin cytoskeleton. The regulated targeting of ezrin to the plasma membrane and its association with cortical F-actin are more than likely functions necessary for a number of cellular processes, such as cell adhesion, motility, morphogenesis and cell signalling. The interaction with F-actin was originally mapped to the last 34 residues of ezrin, which correspond to the last three helices (alphaB, alphaC and alphaD) of the C-terminal tail. We set out to identify and mutate the ezrin/F-actin binding site in order to pinpoint the role of F-actin interaction in morphological processes as well as signal transduction. We report here the generation of an ezrin mutant defective in F-actin binding. We identified four actin-binding residues, T576, K577, R579 and I580, that form a contiguous patch on the surface of the last helix, alphaD. Interestingly, mutagenesis of R579 also eliminated the interaction of band four-point one, ezrin, radixin, moesin homology domains (FERM) and the C-terminal tail domain, identifying a hotspot of the FERM/tail interaction. In vivo expression of the ezrin mutant defective in F-actin binding and FERM/tail interaction (R579A) altered the normal cell surface structure dramatically and inhibited cell migration. Further, we showed that ezrin/F-actin binding is required for the receptor tyrosine kinase signal transfer to the Ras/MAP kinase signalling pathway. Taken together, these observations highlight the importance of ezrin/F-actin function in the development of dynamic membrane/actin structures critical for cell shape and motility, as well as signal transduction.[Abstract] [Full Text] [Related] [New Search]