These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Involvement of calcium in the mevalonate-accelerated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase.
    Author: Roitelman J, Bar-Nun S, Inoue S, Simoni RD.
    Journal: J Biol Chem; 1991 Aug 25; 266(24):16085-91. PubMed ID: 1908464.
    Abstract:
    3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), the rate-limiting enzyme in the biosynthesis of cholesterol and isoprenoids, is subject to rapid degradation which is regulated by mevalonate (MVA)-derived metabolic products. HMG-CoA reductase is an integral membrane protein of the endoplasmic reticulum, the largest nonmitochondrial pool of cellular Ca2+. To assess the possible role of Ca2+ in the regulated degradation of HMG-CoA reductase, we perturbed cellular Ca2+ concentration and followed the fate of HMG-CoA reductase and of HMGal, a fusion protein consisting of the membrane domain of HMG-CoA reductase and the soluble bacterial enzyme beta-galactosidase. The degradation of HMGal mirrors that of HMG-CoA reductase, demonstrating that the membrane domain of HMG-CoA reductase is sufficient to confer regulated degradation (Skalnik, D.G., Narita, H., Kent, C., and Simoni, R.D. (1988) J. Biol. Chem. 263, 6836-6841; Chun, K.T., Bar-Nun, S., and Simoni, R.D. (1990) J. Biol. Chem. 265, 22004-22010). In this study we show that the MVA-dependent accelerated rates of degradation of HMG-CoA reductase and HMGal in cells maintained in Ca(2+)-free medium are 2-3-fold slower than the rate of degradation in cells grown in high (1.8-2 mM) Ca2+ concentration. This effect is reversed upon addition of Ca2+ to the medium. Furthermore, when cells maintained in high Ca2+ are treated with 1 microM ionomycin, the MVA-dependent accelerated degradation of HMG-CoA reductase and HMGal is also reduced about 2-3-fold. This inhibition is not due to a Ca(2+)-dependent uptake or incorporation of MVA into sterols, since these processes are not affected in the absence of external Ca2+. In addition, cobalt, a known antagonist of Ca(2+)-dependent cellular functions, totally abolishes (IC50 = 520 microM in the presence of 1.8 mM extracellular Ca2+) the MVA-accelerated degradation of HMGal. These results suggest that Ca2+ plays a major role in the regulated degradation of HMG-CoA reductase.
    [Abstract] [Full Text] [Related] [New Search]