These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis of structurally well-defined telechelic polymers by organostibine-mediated living radical polymerization: in situ generation of functionalized chain-transfer agents and selective omega-end-group transformations. Author: Yamago S, Yamada T, Togai M, Ukai Y, Kayahara E, Pan N. Journal: Chemistry; 2009; 15(4):1018-29. PubMed ID: 19086048. Abstract: Several organostibine chain-transfer agents possessing polar functional groups have been prepared by the reactions of azo initiators and tetramethyldistibine (1). Carbon-centered radicals thermally generated from the azo initiators were trapped by 1 to yield the corresponding organostibine chain-transfer agents. The high yields observed in the synthesis of the chain-transfer agents strongly suggest that distibines have excellent radicophilic reactivity. As the reactions proceeded under neutral conditions, functional groups that are incompatible with ionic conditions were incorporated into the chain-transfer agents. The chain-transfer agents were used in living radical polymerization to synthesize the corresponding alpha-functionalized polymers. As the functional groups in the chain-transfer agents did not interfere with the polymerization reaction, well-controlled polymers possessing number-average molecular weights (M(n)s) predetermined by the monomer/transfer agent ratios were synthesized with low polydispersity indices (PDIs). The organostibanyl omega-polymer ends were transformed into a number of different functional groups by radical-coupling, radical-addition, and oxidation reactions. Therefore, it was possible to synthesize well-controlled telechelic polymers with the same and also with different functional groups at their alpha- and omega-polymer ends. Distibine 1 was also found to increase PDI control in the living radical polymerization of styrene and methyl methacrylate (MMA) using a purified organostibine chain-transfer agent. Well-controlled poly(methyl methacrylate)s with M(n) values ranging from 10 000 to 120 000 with low PDIs (1.05-1.15) were synthesized by the addition of a catalytic amount of 1. The results have been attributed to the high reactivity of distibine 1 towards polymer-end radicals, which are spontaneously deactivated to yield organostibine dormant species.[Abstract] [Full Text] [Related] [New Search]