These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Design of folate-linked liposomal doxorubicin to its antitumor effect in mice. Author: Yamada A, Taniguchi Y, Kawano K, Honda T, Hattori Y, Maitani Y. Journal: Clin Cancer Res; 2008 Dec 15; 14(24):8161-8. PubMed ID: 19088031. Abstract: PURPOSE: Tumor cell targeting is a promising strategy for enhancing the therapeutic potential of chemotherapy agents. Polyethylene glycol (PEG)-coated (sterically stabilized) liposomes show enhanced accumulation on the surface of tumors, but steric hindrance by PEGylation reduces the association of the liposome-bound ligand with its receptor. To increase folate receptor (FR) targeting, we optimized the concentration and PEG spacer length of folate-PEG-lipid in liposomes. EXPERIMENTAL DESIGN: Three types of folate-linked liposomal doxorubicin were designed and prepared by optimizing the concentration and PEG spacer length of folate-PEG-lipid in PEGylated or non-PEGylated liposomes and by masking folate-linked liposomes where the folate ligand is "masked" by adjacent PEG spacers. The liposome targeting efficacy was evaluated in vitro and in vivo. RESULTS: In human oral carcinoma KB cells, which overexpress FR, modification with sufficiently long PEG spacer and a high concentration of folate ligand to non-PEGylated liposomes increased the FR-mediated association and cytotoxicity more than with PEGylated and masked folate-linked liposomes. On the contrary, in mice bearing murine lung carcinoma M109, modification with the folate ligand in PEGylated and masked folate-linked liposomes showed significantly higher antitumor effect than with non-PEGylated liposomes irrespective of the length of time in the circulation after intravenous injection. CONCLUSIONS: The results of this study will be beneficial for the design and preparation of ligand-targeting carriers for cancer treatment.[Abstract] [Full Text] [Related] [New Search]