These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Derivatization of sialic acids for stabilization in matrix-assisted laser desorption/ionization mass spectrometry and concomitant differentiation of alpha(2 --> 3)- and alpha(2 --> 6)-isomers.
    Author: Wheeler SF, Domann P, Harvey DJ.
    Journal: Rapid Commun Mass Spectrom; 2009 Jan; 23(2):303-12. PubMed ID: 19089860.
    Abstract:
    Sialylated carbohydrates usually decompose by loss of sialic acid when ionized by matrix-assisted laser desorption/ionization (MALDI) as the result of the labile carboxylic proton. Stabilization has previously been achieved by forming methyl esters with methyl iodide, a procedure that eliminates the labile proton. In this paper, we describe an alternative procedure for methyl ester formation that provides information on the sialic acid linkage directly from the MALDI spectrum. The sugars were desalted, dissolved in methanol, and treated with 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM). After removal of the solvent, the products were transferred directly to the MALDI target and examined from 2,5-dihydroxybenzoic acid. Small amounts of N-glycans derived from biological sources benefited from an additional clean-up stage involving Nafion 117. alpha(2 --> 6)-Linked sialic acid produced only methyl esters whereas alpha(2 --> 3)-linked sialic acids were converted into their lactones providing a 32 Da difference in mass. Negative ion collision-induced decomposition (CID) mass spectra of these neutralized glycans provided information, in many cases, on the antenna of N-linked glycans to which the variously linked sialic acids were attached. The method was applied to N-linked glycans released from bovine fetuin and porcine thyroglobulin.
    [Abstract] [Full Text] [Related] [New Search]