These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Surface properties and blood compatibility of commercially available diamond-like carbon coatings for cardiovascular devices.
    Author: Fedel M, Motta A, Maniglio D, Migliaresi C.
    Journal: J Biomed Mater Res B Appl Biomater; 2009 Jul; 90(1):338-49. PubMed ID: 19090492.
    Abstract:
    The aim of this study was to determine the relationships between the surface properties and blood compatibility of in-use diamond-like carbon (DLC) coatings for cardiovascular components. Commercially available DLC films were characterized with respect to surface topography and wettability, protein adsorption from human plasma, and platelets adhesion/activation. Fibrinogen (Fng) and human serum albumin (HSA) adsorbed onto the sample surfaces were in particular quantified as two of the main proteins involved in blood compatibility. A low tendency of platelets to spread and form aggregates onto the DLC-coated surfaces has been described and related to a low Fng-to-HSA adsorption ratio. This study provides evidence that the rapid and tenacious binding of albumin molecules to DLC materials tends to passivate the surfaces and to inhibit Fng adsorption, thus imparting thromboresistance to the carbon coatings by rendering the surfaces less adhesive and activating for platelets. Albumin preferential adsorption was ascribed to high chemical heterogeneity of the DLC sample surfaces. The DLC films tested present a favorable behavior as regards blood compatibility with respect to platelet thrombus formation by reason of their surface properties.
    [Abstract] [Full Text] [Related] [New Search]