These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Erythropoietin protects critically perfused flap tissue. Author: Rezaeian F, Wettstein R, Amon M, Scheuer C, Schramm R, Menger MD, Pittet B, Harder Y. Journal: Ann Surg; 2008 Dec; 248(6):919-29. PubMed ID: 19092336. Abstract: OBJECTIVE: The objective of this study was to analyze whether erythropoietin (EPO) protects from necrosis of critically perfused musculocutaneous tissue and the mechanisms by which this protection is achieved. BACKGROUND: EPO is the regulator of erythropoiesis and is used to treat patients with anemia of different causes. Recent studies suggest that EPO has also other tissue-protective effects, irrespective of its erythropoietic properties. MATERIAL AND METHODS: C57BL/6-mice were treated with 3 doses of EPO at 500 IU/kg intraperitoneally. EPO was given either before (preconditioning, n = 7), before and after (overlapping treatment, n = 7), or after (treatment, n = 7) surgery. Animals receiving only saline served as controls (CON). Acute persistent ischemia was induced by elevating a randomly perfused flap in the back of the animals. This critically perfused tissue demonstrates an initial microvascular failure of approximately 40%, resulting in approximately 50% tissue necrosis if kept untreated. Repetitive fluorescence microscopy was performed over 10 days, assessing angiogenesis, functional capillary density, inflammatory leukocyte-endothelial cell interaction, apoptotic cell death, and tissue necrosis. Additional molecular tissue analyses included the determination of inducible nitric oxide synthase, erythropoietin receptor (EPO-R), and vascular endothelial growth factor (VEGF). RESULTS: EPO preconditioning did not affect hematocrit and EPO-R expression, but increased inducible nitric oxide synthase in the critically perfused tissue. This correlated with a significant arteriolar dilation, which resulted in a maintained functional capillary density (CON: 0 +/- 0 cm/cm(2); preconditioning: 37 +/- 21 cm/cm(2); overlapping treatment: 72 +/- 26 cm/cm(2); P < 0.05). EPO pretreatment further significantly reduced microvascular leukocyte adhesion and apoptotic cell death. Moreover, EPO pretreatment induced an early VEGF upregulation, which resulted in new capillary network formation (CON: 0 +/- 0 cm/cm(2); preconditioning: 40 +/- 3 cm/cm(2); overlapping treatment: 33 +/- 3 cm/cm(2); P < 0.05). Accordingly, EPO pretreatment significantly reduced tissue necrosis (CON: 48% +/- 2%; preconditioning: 26% +/- 3%; overlapping treatment: 20% +/- 3%; P < 0.05). Of interest, EPO treatment was only able to alleviate ischemia-induced inflammation but could not improve microvascular perfusion and tissue survival. CONCLUSIONS: EPO pretreatment improves survival of critically perfused tissue by nitric oxide -mediated arteriolar dilation, protection of capillary perfusion, and VEGF-initiated new blood vessel formation.[Abstract] [Full Text] [Related] [New Search]