These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Salt pretreatment enhance salt tolerance in Zea mays L. seedlings.
    Author: Tajdoost S, Farboodnia T, Heidari R.
    Journal: Pak J Biol Sci; 2007 Jun 15; 10(12):2086-90. PubMed ID: 19093451.
    Abstract:
    Recent molecular studies show that genetic factors of salt tolerance in halophytes exist in glycophytes too, but they are not active. If these plants expose to low level salt stress these factors may become active and cause plants acclimation to higher salt stresses. So because of the importance of these findings in this research the effect of salt pretreatment has been examined in Zea mays seedlings. To do the experiment four day old Zea mays seedlings (Var. single cross 704) pretreated with 50 mM NaCl for the period of 20 h. Then they were transferred to 200 and 300 mM NaCl for 48 h. At the end of treatment roots and shoots of seedlings were harvested separately. The changes of K+ -leakage, the amount of malondialdehyde, proline, soluble sugars and the Hill reaction rate were analyzed. The results indicated that the amount of K+ -leakage and malondialdehyde (MDA) have been increased because of salt-induced lipid peroxidation and membrane unstability. Soluble sugars and proline as osmoregulators has been increased in stress condition and in pretreated plants with NaCl were the highest. The rate of Hill reaction was reduced significantly in stressed plants. Therefore we concluded that salt stress causes serious physiological and biochemical damages in plants and salt pretreatment enhances tolerance mechanisms of plants and help them to tolerate salt stress and grow on salty environments.
    [Abstract] [Full Text] [Related] [New Search]