These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Redox intermediates of the Mn-Fe Site in subunit R2 of Chlamydia trachomatis ribonucleotide reductase: an X-ray absorption and EPR study.
    Author: Voevodskaya N, Lendzian F, Sanganas O, Grundmeier A, Gräslund A, Haumann M.
    Journal: J Biol Chem; 2009 Feb 13; 284(7):4555-66. PubMed ID: 19095645.
    Abstract:
    The R2 protein of class I ribonucleotide reductase (RNR) from Chlamydia trachomatis (Ct) can contain a Mn-Fe instead of the standard Fe-Fe cofactor. Ct R2 has a redox-inert phenylalanine replacing the radical-forming tyrosine of classic RNRs, which implies a different mechanism of O(2) activation. We studied the Mn-Fe site by x-ray absorption spectroscopy (XAS) and EPR. Reduced R2 in the R1R2 complex (R2(red)) showed an isotropic six-line EPR signal at g approximately 2 of the Mn(II)Fe(II) state. In oxidized R2 (R2(ox)), the Mn(III)Fe(III) state exhibited EPR g values of 2.013, 2.009, and 2.015. By XAS, Mn-Fe distances and oxidation states of intermediates were determined and assigned as follows: approximately 4.15 A, Mn(II)Fe(II); approximately 3.25 A, Mn(III)Fe(II); approximately 2.90 A, Mn(III)Fe(III); and approximately 2.75 A, Mn(IV)Fe(III). Shortening of the Mn/Fe-ligand bond lengths indicated formation of additional metal bridges, i.e. microO(H) and/or peroxidic species, upon O(2) activation at the site. The structural parameters suggest overall configurations of the Mn-Fe site similar to those of homo-metallic sites in other R2 proteins. However, the approximately 2.90 A and approximately 2.75 A Mn-Fe distances, typical for di-microO(H) metal bridging, are shorter than inter-metal distances in any R2 crystal structure. In diffraction data collection, such bridges may be lost due to rapid x-ray photoreduction of high-valent metal ions, as demonstrated here for Fe(III) by XAS.
    [Abstract] [Full Text] [Related] [New Search]