These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Distinctions in growth cone morphology and motility between monopolar and multipolar neurons in Drosophila CNS cultures.
    Author: Kim YT, Wu CF.
    Journal: J Neurobiol; 1991 Apr; 22(3):263-75. PubMed ID: 1909746.
    Abstract:
    Growth cones play a central role in determining neurite extension, pathfinding and branching, and in establishing synaptic connections. This paper describes an initial characterization of growth cone morphology and behavior in dissociated larval central nervous system (CNS) cultures of Drosophila. Contrast-enhanced video images of growth cones in monopolar and multipolar neurons were characterized by employing morphometric parameters such as the number and length of filopodia, and the area and roundness of the lamellipodia. Behavior of growth cones was analyzed by a motility index and boundary flow plots originally devised for measuring motility in other cellular systems. We found that separate CNS regions yielded cultures of different major cell types with distinct neuritic patterns that could be correlated with the morphology and motility of the associated growth cones. Monopolar neurons were the major cell type in brain cultures, whereas multipolar neurons were predominant in ventral ganglion cultures. Moreover, the growth cones of monopolar neurons, which are likely to be associated with the axonal processes, differed from those of multipolar neurons, which might be related to dendritic terminals. Growth cones in monopolar neurons had larger lamellipodia of less erratic shape accompanied by fewer and shorter filopodia, and, when active, displayed much higher motility and less directionality in motion. Alternatively, these morphological and behavioral distinctions between monopolar and multipolar neurons may result from intrinsic differences in membrane adhesion and intracellular transport properties.
    [Abstract] [Full Text] [Related] [New Search]