These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Frequency-dependent power output and skeletal muscle design. Author: Medler S, Hulme K. Journal: Comp Biochem Physiol A Mol Integr Physiol; 2009 Mar; 152(3):407-17. PubMed ID: 19101645. Abstract: Cyclically contracting muscles provide power for a variety of processes including locomotion, pumping blood, respiration, and sound production. In the current study, we apply a computational model derived from force-velocity relationships to explore how sustained power output is systematically affected by shortening velocity, operational frequency, and strain amplitude. Our results demonstrate that patterns of frequency dependent power output are based on a precise balance between a muscle's intrinsic shortening velocity and strain amplitude. We discuss the implications of this constraint for skeletal muscle design, and then explore implications for physiological processes based on cyclical muscle contraction. One such process is animal locomotion, where musculoskeletal systems make use of resonant properties to reduce the amount of metabolic energy used for running, swimming, or flying. We propose that skeletal muscle phenotype is tuned to this operational frequency, since each muscle has a limited range of frequencies at which power can be produced efficiently. This principle also has important implications for our understanding muscle plasticity, because skeletal muscles are capable of altering their active contractile properties in response to a number of different stimuli. We discuss the possibility that muscles are dynamically tuned to match the resonant properties of the entire musculoskeletal system.[Abstract] [Full Text] [Related] [New Search]