These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: H(2)O(2) increases de novo synthesis of (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin via GTP cyclohydrolase I and its feedback regulatory protein in vitiligo.
    Author: Chavan B, Beazley W, Wood JM, Rokos H, Ichinose H, Schallreuter KU.
    Journal: J Inherit Metab Dis; 2009 Feb; 32(1):86-94. PubMed ID: 19101819.
    Abstract:
    Patients with vitiligo accumulate up to 10(-3) mol/L concentrations of H(2)O(2) in their epidermis, which in turn affects many metabolic pathways in this compartment, including the synthesis and recycling of the cofactor (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (6BH(4)). De novo synthesis of 6BH(4) is dependent on the rate-limiting enzyme GTP cyclohydrolase I (GTPCHI) together with its feedback regulatory protein (GFRP). This step is controlled by 6BH(4) and the essential amino acid L-phenylalanine. In the study presented here we wanted to investigate whether H(2)O(2) affects the GTPCHI/GFRP cascade in these patients. Our results demonstrated concentration-dependent regulation of rhGTPCHI where 100 micromol/L H(2)O(2) was the optimum concentration for the activation of the enzyme and >300 micromol/L resulted in a decrease in activity. Oxidation of GFRP and GTPCHI does not affect feedback regulation via L-phenylalanine and 6BH(4). In vitiligo a constant upregulation of 6BH(4) de novo synthesis results from epidermal build up of L-phenylalanine that is not controlled by H(2)O(2). Taking the results together, 6BH(4) de novo synthesis is controlled by H(2)O(2) in a concentration-dependent manner, but H(2)O(2)-mediated oxidation does not affect the functionality of the GTPCHI/GFRP complex.
    [Abstract] [Full Text] [Related] [New Search]