These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Translating organellar glutamine codons: a case by case scenario? Author: Frechin M, Duchêne AM, Becker HD. Journal: RNA Biol; 2009; 6(1):31-4. PubMed ID: 19106621. Abstract: Aminoacyl-tRNAs are generally formed by direct attachment of an amino acid to tRNAs by aminoacyl-tRNA synthetases, but glutaminyl-tRNA (Q-tRNA) is an exception to this rule. Glutaminyl-tRNA(Gln) (Q-tRNA(Q)) is formed by this direct pathway in the eukaryotic cytosol and in a small subset of bacteria, but is formed by an indirect transamidation pathway in most bacteria and archaea. To date it is almost impossible to predict what pathway generates organellar Q-tRNA(Q) in a given eukaryote. All eukaryotic genomes sequenced so far, display a single glutaminyl-tRNA synthetase (QRS) gene which is at least responsible for the cytosolic QRS activity, as well as a gene coding for a mitochondrial ortholog of the essential GatB subunit of the tRNA-dependent amidotransferase (AdT). Indeed, QRS activity was found in protozoan mitochondria while AdT activity was characterized in plant organelles. The pathway for Q-tRNA(Q) synthesis in yeast and mammals mitochondria is still questionable.[Abstract] [Full Text] [Related] [New Search]