These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Impact of biofilm on the in vitro activity of vancomycin alone and in combination with tigecycline and rifampicin against Staphylococcus aureus.
    Author: Rose WE, Poppens PT.
    Journal: J Antimicrob Chemother; 2009 Mar; 63(3):485-8. PubMed ID: 19109338.
    Abstract:
    OBJECTIVES: This study evaluated vancomycin susceptibility and activity alone and in combination with rifampicin and tigecycline against low-biofilm- and high-biofilm-producing methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates. METHODS: Forty MRSA isolates recovered from bloodstream infections were analysed. Susceptibilities were performed in planktonic and biofilm cultures by microbroth dilution. Biofilm production was determined using an adherent plate assay. Time-kill analysis was performed on six low- and six high-biofilm-producing isolates with 15 mg/L vancomycin alone and in combination with rifampicin or tigecycline at 4x MIC. RESULTS: Vancomycin susceptibility displayed a 4-fold and an 8-fold increase in the MIC(50) and MIC(90), respectively, in the presence of biofilm. Rifampicin and tigecycline susceptibilities also increased in biofilms, but still remained within the susceptibility breakpoints except for a tigecycline MIC(90) of 1 mg/L. High biofilm production was detected in 60% of the isolates. In time-kill analysis, 15 mg/L vancomycin achieved bactericidal activity against only low-biofilm-producing strains with a 1.8 log(10) cfu/mL difference in bacterial kill compared with high-biofilm-producing strains (P < 0.001). Rifampicin alone had minimal activity, resulting in resistance. Tigecycline was minimally effective and was not bactericidal, but no difference was observed in the comparison of biofilm-producing strains. Vancomycin in combination with rifampicin or tigecycline was bactericidal against all strains (mean kill 4.5 +/- 0.5 log(10) cfu/mL), regardless of biofilm production. CONCLUSIONS: Vancomycin exposures at 15 mg/L may not be adequate in eradicating biofilm-producing S. aureus. Alternative treatments or combination therapy should be explored to optimize outcomes in biofilm-associated infections.
    [Abstract] [Full Text] [Related] [New Search]