These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Circadian controls outweigh acute illumination effects on the activity of extracellular signal-regulated kinase (ERK) in the retina. Author: Ko ML, Shi L, Ko GY. Journal: Neurosci Lett; 2009 Feb 13; 451(1):74-8. PubMed ID: 19111596. Abstract: Extracellular signal-regulated kinase (ERK) participates in numerous cellular functions including circadian-related activities. In the retina, the activity of ERK is under circadian control. However, it is not clear whether acute illumination changes or the circadian clocks in the retina have a larger impact on ERK activity, and the cellular distribution of activated ERK (pERK) as a function of circadian time in cone photoreceptors is not known. Chick embryos were exposed to the light or dark for various lengths of time after 12:12h light-dark (LD) cycles, or on the second day of constant darkness after LD entrainment. Retinas were excised after various exposure times and relative ERK activity was determined by western immunoblotting. We also performed immunohistochemical and immunocytochemical stainings on circadian entrained retina sections and dissociated retina cells. There is about a fourfold difference in ERK activity between retinas harvested at circadian time (CT) 4 and CT 16, and the internal circadian control of ERK activity in the retina overcomes external light exposure. Also, during the subjective night, pERK was more apparent in the outer segment of cones, while pERK distribution was more uniform throughout the photoreceptors during the subjective day. Our results imply that the activity of retinal ERK is influenced more by circadian oscillators than acute illumination changes. Hence, the circadian oscillators in retina photoreceptors play a major role in the regulation of photoreceptor physiology, which leads to the circadian control of light sensitivity in photoreceptors.[Abstract] [Full Text] [Related] [New Search]