These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functions of epidermal growth factor receptor in cisplatin response of thyroid cells.
    Author: Muscella A, Urso L, Calabriso N, Vetrugno C, Fanizzi FP, Storelli C, Marsigliante S.
    Journal: Biochem Pharmacol; 2009 Mar 15; 77(6):979-92. PubMed ID: 19111676.
    Abstract:
    Epidermal growth factor receptor (EGFR) signal transduction pathway has been reported to play a vital role in the biologic progression of several tumours and as targets for therapeutic intervention. We have investigated the role of EGFR in the thyroid PC Cl3 cells response to the chemo-therapeutic agent cisplatin. It was found that cisplatin provoked (1) the activation (phosphorylation) and internalization of EGFR, (2) the phosphorylation of mitogen-activated protein kinase (MAPK)/p38, (3) the activation of PKC-epsilon, (4) the enhancement of matrix metalloproteinase-2 (MMP-2) expression and activity, (5) the generation of reactive oxygen species (ROS) and (6) the activation of the apoptotic intrinsic pathway. Inhibition or down regulation of EGFR reduced (1) the phosphorylation of MAPK/p38, (2) the cisplatin-provoked activation of PKC-epsilon, and (3) the activation of caspase-7 and PARP cleavage and the overall cells sensitivity to cisplatin. PKC-epsilon inhibition achieved by siRNA blocked MAPK/p38 activation and significantly increased the cell resistance to cisplatin. Finally, when the cisplatin-induced ROS generation was blocked by using NAD(P)H oxidase inhibitors, a decrease in cisplatin-induced MMP-2 enhancement, MAPK/p38 and EGFR activation, and caspase-7 proteolysis occurred. In conclusion, these findings supported a model in which cisplatin provokes an oxidant-induced MMP-2-dependent EGFR transactivation responsible for the induction of cell apoptosis, a process ascribable to the intracellular signalling of PKC-epsilon and MAPK/p38.
    [Abstract] [Full Text] [Related] [New Search]