These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biocatalysis in water-in-ionic liquid microemulsions: a case study with horseradish peroxidase.
    Author: Moniruzzaman M, Kamiya N, Goto M.
    Journal: Langmuir; 2009 Jan 20; 25(2):977-82. PubMed ID: 19113810.
    Abstract:
    In this article we report the first results on the enzymatic activity of horseradish peroxidase (HRP) microencapsulated in water-in-ionic liquid (w/IL) microemulsions using pyrogallol as the substrate. Toward this goal, the system used in this study was composed of anionic surfactant AOT (sodium bis(2-ethyl-1-hexyl)sulfosuccinate)/hydrophobic IL [C(8)mim][Tf(2)N] (1-octyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)amide)/water/1-hexanol. In this system, the catalytic activity of HRP was measured as a function of substrate concentrations, W(0) (molar ratio of water to surfactant), pH, and 1-hexanol content. The curve of the activity-W(0) profile was found to be hyperbolic for the new microemulsion. The apparent Michaelis-Menten kinetic parameters (k(cat) and K(m)) were estimated and compared to those obtained from a conventional microemulsion. Apparently, it was found that HRP-catalyzed oxidation of pyrogallol by hydrogen peroxide in IL microemulsuions is much more effective than in a conventional AOT/water/isooctane microemulsion. The stability of HRP solubilized in the newly developed w/IL microemulsions was examined, and it was found that HRP retained almost 70% of its initial activity after incubation at 28 degrees C for 30 h.
    [Abstract] [Full Text] [Related] [New Search]