These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Photoreactivity of biologically active compounds. XIX: excited states and free radicals from the antimalarial drug primaquine.
    Author: Kristensen S, Edge R, Tønnesen HH, Bisby RH, Navaratnam S.
    Journal: J Photochem Photobiol B; 2009 Mar 03; 94(3):147-57. PubMed ID: 19114311.
    Abstract:
    The formation and reactivity of excited states and free radicals from primaquine, a drug used in the treatment of malaria, was studied in order to evaluate the primary photochemical reaction mechanisms. The excited primaquine triplet was not detected, but is likely to be formed with a short lifetime (<50 ns) and with a triplet energy <250 kJ/mol as the drug is an efficient quencher of the fenbufen triplet and the biphenyl triplet, and forms (1)O(2) by laser flash photolysis ((PQ)Phi(Delta)=0.025). Primaquine (PQ) exists as the monocation (PQH(+)) in aqueous solution at physiological pH. PQH(+) photoionises by a biphotonic process and also forms the monoprotonated cation radical (PQH(2+)*) by one electron oxidation by HO* (k(q)=6.6 x 10(9) M(-1) s(-1)) and Br*(2)(-) (k(q)=4.7 x 10(9) M(-1) s(-1)) at physiological pH, detected as a long-lived transient decaying essentially by a second order process (k(2)=7.4 x 10(8) M(-1) s(-1)). PQH(2+)* is scavenged by O(2), although at a limited rate (k(q)=1.0 x 10(6) M(-1) s(-1)). The reduction potential (E degrees) of PQH(2+)*/PQH(+) is < +1015 mV, as measured versus tryptophan (TRP*/TRPH). Primaquine also forms PQH(2+)* at pH 2.4, by one electron oxidation by Br*(2)(-) and proton loss (k(q)=2.7 x 10(9) M(-1) s(-1)). The non-protonated cation radical (PQ(+)*) is formed during one electron oxidation with Br*(2)(-) at alkaline conditions (k(q)=4.2 x 10(9) M(-1) s(-1) at pH 10.8). The estimated pK(a)-value of PQH(2+)*/PQ(+)* is pK(a) approximately 7-8. Primaquine is not a scavenger of O*(2)(-) at physiological pH. Thus self-sensitization by O*(2)(-) is eliminated as a degradation pathway in the photochemical reactions. Impurities in the raw material and photochemical degradation products initiate photosensitized degradation of primaquine in deuterium oxide, prevented by addition of the (1)O(2) quencher sodium azide. Photosensitized degradation by formation of (1)O(2) is thus important for the initial photochemical decomposition of primaquine, which also proceeds by free radical reactions. Formation of PQH(2+)* is expected to play an essential part in the photochemical degradation process in a neutral, aqueous medium.
    [Abstract] [Full Text] [Related] [New Search]