These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Betulinic acid induces cytochrome c release and apoptosis in a Bax/Bak-independent, permeability transition pore dependent fashion. Author: Mullauer FB, Kessler JH, Medema JP. Journal: Apoptosis; 2009 Feb; 14(2):191-202. PubMed ID: 19115109. Abstract: Betulinic acid (BetA) is a plant-derived pentacyclic triterpenoid that exerts potent anti-cancer effects in vitro and in vivo, but is non toxic to untransformed cells. In our previous study we observed that BetA consistently induced cell death in a broad panel of tumor cell lines. Apoptosis induced by BetA involves activation of caspases, PARP cleavage and DNA fragmentation and was suggested to depend on the mitochondrial pathway. However, conflicting results have been reported with respect to the role of the pro- and anti-apoptotic members of the Bcl-2 family, which are often aberrantly regulated in tumors and thereby confer growth and survival advantages. Here we show that BetA-induced apoptosis critically depends on the release of cytochrome c from the mitochondria and formation of the apoptosome. Nevertheless, over-expression of Bcl-2 or Bcl-XL only provides limited protection against BetA-induced apoptosis. More importantly, Bax/Bak deficient cells are as sensitive to BetA as their wild-type counterparts, suggesting that cytochrome c is released in a non-classical fashion. In agreement, pre-incubation with cyclosporin A indicated a crucial role for the mitochondrial permeability transition pore (PT) in the induction of apoptosis. Our observations therefore indicate that BetA affects mitochondria and induces cytochrome c release directly via PT Pore. This is only temporarily prevented by anti-apoptotic members of the Bcl-2 family, but independent of Bax and Bak. These findings help to explain the remarkable broad efficacy of BetA against tumor cells of different origin and its effect in tumor cells that are resistant to other chemotherapeutic agents.[Abstract] [Full Text] [Related] [New Search]