These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of interleukin-1beta on osteogenic protein 1-induced signaling in adult human articular chondrocytes.
    Author: Elshaier AM, Hakimiyan AA, Rappoport L, Rueger DC, Chubinskaya S.
    Journal: Arthritis Rheum; 2009 Jan; 60(1):143-54. PubMed ID: 19116903.
    Abstract:
    OBJECTIVE: Two major receptor-activated Smad (R-Smad) signaling pathways, bone morphogenetic protein (BMP) and MAPK, were examined in a model of interleukin-1beta (IL-1beta)-induced cartilage degeneration to investigate the effect of IL-1beta on osteogenic protein 1 (OP-1) signaling in adult human articular chondrocytes. METHODS: Chondrocytes from the ankles of 26 normal human donors were cultured in high-density monolayers in serum-free medium. The effect of IL-1beta on BMP receptors was studied by reverse transcription-polymerase chain reaction and flow cytometry. Phosphorylation of R-Smads was tested in cells treated with IL-1beta (10 ng/ml), OP-1 (100 ng/ml), or the combination of IL-1beta and OP-1. Cell lysates were analyzed by Western blotting with polyclonal antibodies against 2 R-Smad phosphorylation sites (BMP- and MAPK-mediated) or with total, nonphosphorylated R-Smad as a control. To identify which MAPKs play a role in IL-1beta activation of the linker region, chondrocytes were preincubated with specific MAPK inhibitors (PD98059 for MAP/ERK, SP600125 for JNK, and SB203580 for p38). RESULTS: IL-1beta reduced the number of activin receptor-like kinase 2 (ALK-2) and ALK-3 receptors, inhibited expression of Smad1 and Smad6, delayed and prematurely terminated the onset of OP-1-mediated R-Smad phosphorylation, and affected nuclear translocation of R-Smad/Smad4 complexes. The alternative phosphorylation of R-Smad in the linker region via the MAPK pathway (primarily p38 and JNK) was observed to be a possible mechanism through which IL-1beta offsets OP-1 signaling and the response to OP-1. Conversely, OP-1 was found to directly inhibit phosphorylation of p38. CONCLUSION: These findings describe new mechanisms of the crosstalk between OP-1 and IL-1beta in chondrocytes. The study also identifies potential targets for therapeutic interventions in the treatment of cartilage-degenerative processes.
    [Abstract] [Full Text] [Related] [New Search]