These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Thymic microenvironments for T-cell repertoire formation. Author: Nitta T, Murata S, Ueno T, Tanaka K, Takahama Y. Journal: Adv Immunol; 2008; 99():59-94. PubMed ID: 19117532. Abstract: Functionally competent immune system includes a functionally competent T-cell repertoire that is reactive to foreign antigens but is tolerant to self-antigens. The repertoire of T cells is primarily formed in the thymus through positive and negative selection of developing thymocytes. Immature thymocytes that undergo V(D)J recombination of T-cell antigen receptor (TCR) genes and that express the virgin repertoire of TCRs are generated in thymic cortex. The recent discovery of thymoproteasomes, a molecular complex specifically expressed in cortical thymic epithelial cells (cTEC), has revealed a unique role of cTEC in cuing the further development of immature thymocytes in thymic cortex, possibly by displaying unique self-peptides that induce positive selection. Cortical thymocytes that receive TCR-mediated positive selection signals are destined to survive for further differentiation and are induced to express CCR7, a chemokine receptor. Being attracted to CCR7 ligands expressed by medullary thymic epithelial cells (mTEC), CCR7-expressing positively selected thymocytes relocate to thymic medulla. The medullary microenvironment displays another set of unique self-peptides for trimming positively selected T-cell repertoire to establish self-tolerance, via promiscuous expression of tissue-specific antigens by mTEC and efficient antigen presentation by dendritic cells. Recent results demonstrate that tumor necrosis factor (TNF) superfamily ligands, including receptor activating NF-kappaB ligand (RANKL), CD40L, and lymphotoxin, are produced by positively selected thymocytes and pivotally regulate mTEC development and thymic medulla formation.[Abstract] [Full Text] [Related] [New Search]