These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Two-dimensional (43)Ca-(1)H correlation solid-state NMR spectroscopy.
    Author: Wong A, Laurencin D, Dupree R, Smith ME.
    Journal: Solid State Nucl Magn Reson; 2009 Feb; 35(1):32-6. PubMed ID: 19117733.
    Abstract:
    Calcium-43 (nuclear spin, S=7/2) is an NMR insensitive low-gamma quadrupolar nucleus and up until recently only one-dimensional solid-state (43)Ca NMR spectra have been reported. Through-space correlation experiments are challenging between spin-12 and low-gamma quadrupolar nuclei because of the intrinsically weak dipolar interaction and the often-low natural abundance of the quadrupolar nucleus. Rotary-resonance recoupling (R(3)) has recently been used to re-introduce hetero-nuclear dipolar interactions for sensitive high-gamma quadrupolar nuclei, but has not yet been applied in the case of low-gamma half-integer quadrupolar nuclei. Here an effective and robust 2D (1)H-(43)Ca NMR correlation experiment combining the R(3) dipole-recoupling scheme with 2D HMQC is presented. It is demonstrated that the weak (43)Ca-(1)H dipolar coupling in hydroxyapatite and oxy-hydroxyapatite can be readily re-introduced and that this recoupling scheme is more efficient than conventional cross-polarization transfer. Moreover, three (43)Ca-(1)H dipolar coupled calcium environments are clearly resolved in the structurally unknown oxy-hydroxyapatite. This local information is not readily available from other techniques such as powder XRD and high resolution electron microscopy. R(3)-HMQC is also a desirable experiment because the set-up is simple and it can be applied using conventional multi-resonance probes.
    [Abstract] [Full Text] [Related] [New Search]