These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of titanium particle-induced osteoclastogenesis through inactivation of NFATc1 by VIVIT peptide.
    Author: Liu F, Zhu Z, Mao Y, Liu M, Tang T, Qiu S.
    Journal: Biomaterials; 2009 Mar; 30(9):1756-62. PubMed ID: 19118894.
    Abstract:
    Osteoclastogenesis induced by particulate wear debris is a major pathological factor contributing to periprosthetic osteolysis. Although the nuclear factor of activated T cells c1 (NFATc1) is known to be involved in osteoclast differentiation, its effect on osteoclastogenesis in response to wear particles remains unclear. In the present study, we investigated the role of NFATc1 in the regulation of osteoclast differentiation from bone marrow macrophages (BMMs) stimulated with titanium (Ti) particles. The results showed that Ti particles could stimulate BMMs to produce proinflammatory cytokines (tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6) and differentiate into multinucleated osteoclasts in the presence of receptor activator of nuclear factor-kappaB ligand (RANKL). NFATc1 was expressed in BMMs and multinucleated cells cultured with Ti particles and RANKL. Inactivation of NFATc1 by 11R-VIVIT peptide potently impeded the Ti particle-induced osteoclastogenesis. 11R-VIVIT peptide does not have toxic effect on BMMs. Based on these data, we conclude that inactivation of NFATc1 by VIVIT peptide would provide a promising therapeutic target for the treatment of periprosthetic osteolysis.
    [Abstract] [Full Text] [Related] [New Search]