These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Arbuscular mycorrhizal dynamics in a chronosequence of Caragana korshinskii plantations.
    Author: Liu Y, He L, An L, Helgason T, Feng H.
    Journal: FEMS Microbiol Ecol; 2009 Jan; 67(1):81-92. PubMed ID: 19120460.
    Abstract:
    Arbuscular mycorrhizal (AM) fungi in a chronosequence of 5-42-year-old Caragana korshinskii plantations in the semi-arid Loess Plateau region of northwestern China were investigated. AM fungi colonization, spore diversity and PCR-denatured gradient gel electrophoresis-based AM fungal SSU rRNA gene sequences were analyzed. AM fungi colonization [measured as the percent of root length (%RLC), vesicular (%VC) and arbuscular (%AC) colonization] and spore density were significantly correlated with sampling month, but not with plant age, except for %RLC. The percent of vesicular colonization was negatively correlated with soil total nitrogen and organic carbon, and spore density was negatively correlated with soil moisture and available phosphorus. Ten distinguishable AM fungal spore morphotypes, nine Glomus and one Scutellospora species, were found. Nine AM fungal Glomus phylotypes were identified by sequencing, but at each sampling time only four to six AM fungal phylotypes were detected. The AM fungal community was significantly seasonal, whereas the AM fungal species richness did not increase with plantation age. A significant change in AM fungal colonization and community composition over an annual cycle was observed in this study, and our results suggest that the changes of AM are the product of the interaction between host phenology, soil characteristics and habitat. Understanding these interactions is essential if habitat restoration is to be effective.
    [Abstract] [Full Text] [Related] [New Search]