These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Global dissipativity analysis on uncertain neural networks with mixed time-varying delays.
    Author: Song Q, Cao J.
    Journal: Chaos; 2008 Dec; 18(4):043126. PubMed ID: 19123636.
    Abstract:
    In this paper, the problems of global dissipativity and global exponential dissipativity are investigated for uncertain neural networks with discrete time-varying delay and distributed time-varying delay as well as general activation functions. By constructing appropriate Lyapunov-Krasovskii functionals and employing Newton-Leibniz formulation and linear matrix inequality (LMI) technique, several new criteria for checking the global dissipativity and global exponential dissipativity of the addressed neural networks are established in terms of LMI, which can be checked numerically using the effective LMI toolbox in MATLAB. Illustrated examples are given to show the effectiveness and decreased conservatism of the proposed criteria in comparison with some existing results. It is noteworthy that the traditional assumptions on the differentiability of the time-varying delays and the boundedness of its derivative are removed.
    [Abstract] [Full Text] [Related] [New Search]