These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ultrafast FRET in a room temperature ionic liquid microemulsion: a femtosecond excitation wavelength dependence study. Author: Adhikari A, Das DK, Sasmal DK, Bhattacharyya K. Journal: J Phys Chem A; 2009 Apr 23; 113(16):3737-43. PubMed ID: 19127996. Abstract: Fluorescence resonance energy transfer (FRET) from coumarin 480 (C480) to rhodamine 6G (R6G) is studied in a room temperature ionic liquid (RTIL) microemulsion by picosecond and femtosecond emission spectroscopy. The microemulsion is comprised of the RTIL 1-pentyl-3-methylimidazolium tetraflouroborate, [pmim][BF4], in TX-100/ benzene. We have studied the microemulsion with and without water. The time constants of FRET were obtained from the risetime of the acceptor (R6G) emission. In the RTIL microemulsion, FRET occurs on multiple time scales: 1, 250, and 3900 ps. In water containing RTIL microemulsion, the rise components are 1.5, 250, and 3900 ps. The 1 and 1.5 ps components are assigned to FRET at a close contact of donor and acceptor (RDA approximately 12 A). This occurs within the highly polar (RTIL/water) pool of the microemulsion. With increase in the excitation wavelength (lambdaex) from 375 to 435 nm, the relative contribution of the ultrafast component of FRET (1 ps) increases from 4% to 100% in the RTIL microemulsion and 12% to 100% in the water containing RTIL microemulsion. It is suggested that at lambdaex = 435 nm, mainly the highly polar RTIL pool is probed where FRET is very fast due to the close proximity of the donor and the acceptor. The very long 3900 ps (RDA approximately 45 A) component may arise from FRET from a donor in the outer periphery of the microemulsion to an acceptor in the polar RTIL pool. The 250 ps component (RDA approximately 29 A) is assigned to FRET from a donor inside the surfactant chains.[Abstract] [Full Text] [Related] [New Search]