These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Consequences of different housing conditions on brain morphology in laying hens.
    Author: Patzke N, Ocklenburg S, van der Staay FJ, Güntürkün O, Manns M.
    Journal: J Chem Neuroanat; 2009 May; 37(3):141-8. PubMed ID: 19135145.
    Abstract:
    The aim of this study was to analyze the impact of physical and social stress on the avian forebrain morphology. Therefore, we used laying hens kept in different housing systems from puberty (approximately 16 weeks old) until the age of 48 weeks: battery cages, small littered ground pen, and free range system. Cell body sizes and catecholaminergic and serotonergic innervation patterns were investigated in brain areas expected to be sensitive to differences in environmental stimulation: hippocampal substructures and the nidopallium caudolaterale (NCL), a functional analogue of the prefrontal cortex. Our analysis shows both structures differing in the affected morphological parameters. Compared to battery cage hens, hens in the free range system developed larger cells in the dorsomedial hippocampus. Only these animals exhibited an asymmetry in the tyrosine hydroxylase density with more fibres in the left dorsomedial hippocampus. We assume that the higher spatial complexity of the free range system is the driving force of these changes. In contrast, in the NCL the housing systems affected only the serotonergic innervation pattern with highest fibre densities in free range hens. Moreover hens of the free range system displayed the worst plumage condition, which most likely is caused by feather pecking causing an altered serotonergic innervation pattern. Considering the remarkable differences between the three housing conditions, their effects on hippocampal structures and the NCL were surprisingly mild. This observation suggests that the adult brain of laying hens displays limited sensitivity to differences in social and physical environment induced post-puberty, which warrants further studies.
    [Abstract] [Full Text] [Related] [New Search]