These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Down-regulation of c-Src/EGFR-mediated signaling activation is involved in the honokiol-induced cell cycle arrest and apoptosis in MDA-MB-231 human breast cancer cells. Author: Park EJ, Min HY, Chung HJ, Hong JY, Kang YJ, Hung TM, Youn UJ, Kim YS, Bae K, Kang SS, Lee SK. Journal: Cancer Lett; 2009 May 18; 277(2):133-40. PubMed ID: 19135778. Abstract: Honokiol is a naturally occurring neolignan abundant in Magnoliae Cortex and has showed anti-proliferative and pro-apoptotic effects in a wide range of human cancer cells. However, the molecular mechanisms on the anti-proliferative activity in cancer cells have been poorly elucidated. In this study, we evaluated the growth inhibitory activity of honokiol in cultured estrogen receptor (ER)-negative MDA-MB-231 human breast cancer cells. Honokiol exerted anti-proliferative activity with the cell cycle arrest at the G0/G1 phase and sequential induction of apoptotic cell death in a concentration-dependent manner. The honokiol-induced cell cycle arrest was well correlated with the suppressive expression of CDK4, cyclin D1, CDK2, cyclin E, c-Myc, and phosphorylated retinoblastoma protein (pRb) at Ser780. Apoptosis caused by honokiol was also concomitant with the cleavage of caspases (caspase-3, -8, and -9) and Bid along with the suppressive expression of Bcl-2, but it was independent on the expression of Bax and p53. In addition, honokiol-treated cells exhibited the cleavage of poly (ADP-ribose) polymerase (PARP) and DNA fragmentation. In the analysis of signal transduction pathway, honokiol down-regulated the expression and phosphorylation of c-Src, epidermal growth factor receptor (EGFR), and Akt, and consequently led to the inactivation of mTOR and its downstream signal molecules including 4E-binding protein (4E-BP) and p70 S6 kinase. These findings suggest that honokiol-mediated inhibitory activity of cancer cell growth might be related with the cell cycle arrest and induction of apoptosis via modulating signal transduction pathways.[Abstract] [Full Text] [Related] [New Search]